

Prevalence of micronutrient deficiency in adults with class 3 obesity

Lisa Sengul¹, Ritesh Chimoriya², Pamela Acosta Reyes², Kathy Grudzinskas¹, Nic Kormas¹, Milan K Piya^{1,2}

- 1. South Western Sydney Metabolic Rehabilitation and Bariatric Program, Campbelltown and Camden Hospitals
- 2. School of Medicine, Western Sydney University

Introduction

- 66% of adults in South Western Sydney (SWS) live with overweight or obesity.
- Class 3 obesity is defined by a body mass index (BMI) of ≥40 kg/m². In Australia, 4.6% of adults lived with Class 3 obesity in 2022-23.
- There is a higher incidence of micronutrient deficiency in people with overweight and obesity. Micronutrients are essential to support the body's metabolic and physiological processes.
- There is lack of data on micronutrient status in people with class 3 obesity & in SWS.

Aims

- To examine the prevalence of micronutrient deficiency in adults with class 3 obesity
- To investigate the association between BMI and micronutrient status in class 3 obesity.

weight loss

Methods

Serum micronutrient levels examined for 347 participants & compared to micronutrient reference ranges as per the hospital laboratory **Exclusions:**

Fasting blood samples collected from all adult patients enrolling in the MRBP between March 2018 & June 2023

surgery & BMI<40 A retrospective cohorstudy of adults attending the SWS Metabolic

Rehabilitation &

Bariatric Program

(MRBP).

Normality was tested using Shapiro Wilk test & Pearson's correlation or Spearman's rank correlation was then

performed

Results

- Serum micronutrient levels were below the reference intervals in 51.0% vitamin D, 10.2% iron, 3.8% vitamin B12, 3.6% Folate, 4.3% magnesium and 1.9% phosphate.
- Other micronutrient levels did not correlate with BMI.

Table 1 Baseline Characteristics of participants

	Mean ± SEM	Median
Age (years)	49.1±13.4	49
Females (%)	69.5	
Weight (kg)	148.4±33.9	142
BMI (kg/m2)	52.9±10.4	51.4

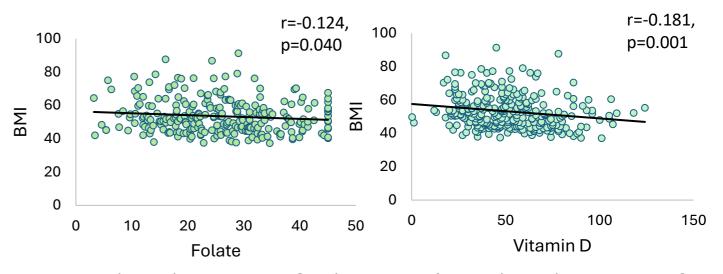


Fig. 1a Correlation between BMI & Folate Fig. 1b Correlation between BMI & Vit D

Table 2 Correlation between BMI & serum micronutrients

	n	Correlation Coefficient (r)	p value
Corrected Calcium	314	0.098	0.083
Magnesium	303	0.074	0.202
Phosphate	311	-0.011	0.844
Iron	293	-0.051	0.385
Active B12	286	-0.110	0.064
Folate	278	-0.124	0.040
Vitamin D	304	-0.181	0.001

Conclusion

There was a high prevalence of vitamin D and iron deficiency in people with class 3 obesity, and lower vitamin D and folate levels with increasing BMI. This highlights the need to consider micronutrient status in people with class 3 obesity and when making dietary recommendations and recommending supplements.

- Australian Bureau of Statistics. National Health Survey, 2022.
- Australian Institute of Health and Welfare (AIHW) report on overweight and obesity, 2024.
- https://www.healthstats.nsw.gov.au McKay et al. BMC Nutrition, 2020.