Evaluating Machine Learning Multi-Label Approaches for **Classification of Unstructured Electronic Health Records with a Generative Large Language Model**

Dinithi Vithanage, Chao Deng, Lei Wang, Mengyang Yin, Mohammad Alkhalaf, Zhenyua Zhang, Yunshu Zhu, Alan Christy Soewargo, Ping Yu. University of Wollongong, Australia.

1. Research Problem

3. Research Methodology

1. Obtain ethics approval

2. Select the Llama 3-8B parameter model

3. Collect data from residential aged care facilities

5. Execute machine learning methods: zero-shot and few-shot

- prompt-based learning
- PEFT
- RAG

*****Early Stage:

 Generative Al-based LLMs are still in the early stages of being applied to extract clinical insights from free-text electronic health records (EHR).

Potential vs. Limitations:

 LLMs have shown promise in answering clinical questions and extracting data from public health datasets, but their application in real-world clinical tasks remains limited.

Safety Concerns:

• The ability of LLMs to meet stringent healthcare safety standards is uncertain, with risks of generating disinformation, bias, or hallucinations.

Prompting Strategies:

 The optimal prompting strategies for healthcare information extraction (zero-shot vs. few-shot) are 4. Select clinical tasks for multi-label classification:

- agitation in dementia
- depression in dementia
- frailty index
- malnutrition risk factors

performance using accuracy, precision, recall, and F1 score.

7. Conduct statistical analysis

6. Evaluate model

4. Results

- The same level of performance with the same prompting template, either zero-shot or few-shot learning across the four clinical tasks.
- Few-shot learning outperforms zero-shot learning

still unclear.

2. Research Aim

The experimental research aims to test the effect of the zero-shot and few-shot learning prompting strategies, with and without retrieval augmented generation (RAG) and parameter efficient fine-tuning (PEFT) LLMs, on the multi-label classification of the EHR data set.

without PEFT.

- Fine-tuning significantly enhanced the effectiveness of both zero-shot and few-shot learning.
- The performance of zero-shot learning reached the same level as few-shot learning after PEFT.
- The analysis underscores that LLMs with PEFT for specific clinical tasks maintain their performance across diverse clinical tasks.
- The RAG with few-shot learning outperforms RAG with zero-shot learning, while there is no significant difference between RAG with few-shot and PEFT with zero-shot learning.

5. Conclusion

- RAG with few-shot learning and PEFT with zero-shot or few-shot learning plays a crucial role in optimizing LLM performance.

These insights emphasise the adaptability and effectiveness of RAG and PEFT within the LLMs for various clinical tasks.

